The closing date for this job has passed; return to the main list for other jobs

Mathematical and computational modeller with experience in Bayesian parameter estimation.

We are currently seeking a mathematical and computational modeller, with experience in Bayesian parameter estimation, to develop and adapt a modelling framework for a major disease of plantation crops for use at landscape and country-wide scales. A stochastic, spatially-explicit modelling framework has been developed and tested under US conditions and it is now being adapted for spread of a disease of citrus plantations in the EU and potentially too for sub-Saharan Africa (SSA). A prime aim of the modelling is to provide a tool to inform industry and policy/regulators on preparedness, surveillance and options for management of the disease in the event of an outbreak. The disease, known as citrus greening, is caused by a bacterium that is transmitted by insect vector and human movement of plant material. The modelling framework involves integration of the crop dynamics for selected countries in the EU/SSA, together with pathogen, vector and grower dynamics as well as incorporation of meteorological variables. Applications are invited from candidates with a PhD in applied mathematics, physics, statistics or a related subject. A strong background in applied modelling of biological or related systems would be an advantage along with an understanding of Bayesian parameter estimation. Familiarity with mathematical modelling of disease epidemics would be a strong advantage. Knowledge of Python, R and handling of spatial data is highly desirable. The ideal candidates will be able to work closely with other modellers in the group and liaise with biologists to incorporate realistic biological processes into models. Fixed-term: The funds for this post are available for 2 years in the first instance. Salary range according to experience.

Dept of Plant Sciences, University of Cambridge
Closing date
June 18th, 2021
Posted on
June 7th, 2021 17:12
Last updated
June 7th, 2021 17:12