Development of novel statistical/ machine learning tools to integrate clinical research data and identify/ parameters predictive of infection outcomes

This is a joint initiative between the Host-Pathogen Interactions research group led by Prof Rachel McLoughlin at the School of Biochemistry and Immunology and the Discipline of Statistics and Information Systems, School of Computer Science and Statistics, Trinity College Dublin (contacts Prof. Brett Houlding and Prof. Arthur White)

The successful applicant will lead an exciting new project that aims to develop novel statistical / machine learning tools to integrate clinical and immunological data, which will identify immune parameters predictive of infection outcomes during bloodstream infection with the human pathogen Staphylococcus aureus (MRSA).
We are looking for a highly motived and ambitious candidate with a strong background in mathematical modelling, data science and statistics, ideally in the context of a biological setting. Both research teams already include post-doctoral researchers and PhD students. The new position will actively support PhD students and undergraduate students in laboratory work, present at national and international meetings, and publish in leading international statistical and immunological journals.

A PhD in Statistics, Computer Science, or other related quantitative modelling subject with a proven publication record.
Experience in using supervised and unsupervised machine learning / statistical algorithms, e.g., regression trees, ensemble methods, model-based clustering etc.
Experience with suitable software for data extraction and analysis (Python, R, SQL etc.).
Ability to work in a multi-disciplinary setting.

Project Scientific Background
The WHO highlights the epidemic of antibiotic resistance in MRSA as a particular threat to society, strongly advocating for the development of alternatives to antibiotics. Over the past 15 years significant efforts have been made to develop an anti-MRSA vaccine, but to-date none have been successful. This is in part due to the fact that, so far, well-defined correlates of immunity have failed to be identified. It is imperative then that we identify specific immune phenotypes associated with positive/negative outcomes during invasive MRSA infection in patients to facilitate the development of next generation vaccines against this type of infection. Recent improvements and access to hardware measurement devices have now opened up opportunities to analyse human cells on a level never before available, providing fast access to multi-dimensional attributes of infected cells before, during and after infection. This improvement in technology has resulted in a state-of-the-art multiplicity of data that is now ripe for statistical development, exploration and exploitation, moving from analysis by eye, to the use and development of cutting edge statistical machine learning and intelligent decision making algorithms.

The appointment will be a fixed term contract for a period of 2 years at level 2A point 3 of the SFI (Science foundation Ireland) salary scale which equates to a starting salary of €39,138 per annum. Closing Date for applications is 31st January 2019 or until a suitable candidate is identified.

For further enquiries or to apply please contact Applications should include a cover letter and CV giving the names and contact details of 2 referees.

Trinity Biomedical Sciences Institute, Trinity College Dublin
Closing date
January 31st, 2019
Posted on
January 10th, 2019 12:05
Last updated
January 10th, 2019 12:05